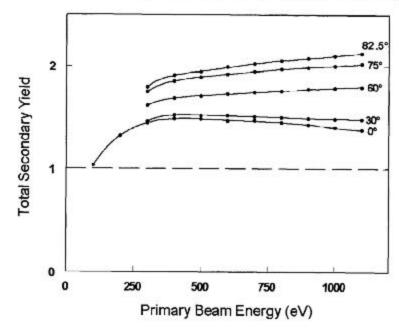

SNS bellow PSR bellow Efield $\sim e^{-ps/d}$ in the gap 10-4100kV/m 1.45 cm Incidence Angle d=0.5 cm Electron Flux

Proton Beam


Multipacting on the trailing edge

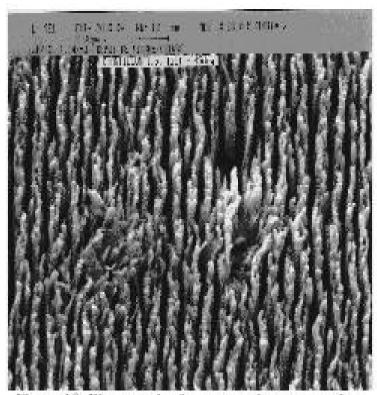
- Due to the decreasing electric field of the proton beam, electrons gain energy (around 300 eV).
- The effect for the SNS ring is stronger than for the PSR (LANL) due to the longer pulse and the larger aperture.
- For maximum SEM coefficient equal to 2 (e.g. SS), one electron at the center produces e¹⁰ secondary electrons.
- Safe SEM number is 1.5 (TiN coating gives about this)

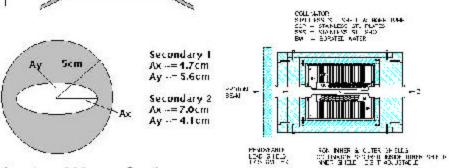
Yield vs. Incidence Angle

TiN/Al, Grooves Parallel To Primary Electron Beam, No Conditioning

Robert E. Kirby - SLAC

The secondary emission from the bellows is determined by two phenomena with the opposite action: the electric field decay in the bellow valley and SEM dependence on the incident angle




Figure 10: Photograph of a textured copper surface

 Shown dendritic surface has the SEM coefficient less than 0.5. The SEM electrons get stuck in the narrow gaps between pins, and the electric field can't penetrate into the valleys

Secondary collimators

L 110cm

 Aperture 300π μm Section changing along the collimator following β

SCILEMATOR OF COLLINATOR GOVERNMENTS

Accelerator physics

10cm

BNL, Upton, NY